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CHAPTER 1 INTRODUCTION

Micro-simulation models provide tremendous capabilities to model, at a high level of
resolution, complex systems in a broad range of fields, including economy, sociology,
physics, chemistry, and engineering (Anderson & Hicks, 2011). In the context of
vehicular traffic systems, microscopic traffic flow models enable the modeling of many
aspects of the actual system, including the maneuvers of individual vehicles and their
interactions, the various types and characteristics of facilities, and the vast number of
control settings. These capabilities are associated with a large number of modeling
parameters that typically need to be tailored for each vehicular system. For example,
driver behavior includes parameters associated with car following, lane-changing
maneuvers, and gap acceptance. Thus, the quality of the model and the validity of its
results are highly dependent on the correctness of the chosen parameters (Breski,
Cvitanic, & Lovric, 2006; Brockfeld, Kuhne, & Wagner, 2005; Holm, Tomich, Sloboden,
& Lowrance, 2007; Kim & Rilett, 2003; Kondyli, Soria, Duret, & Elefteriadou, 2012;
Schultz & Rilett, 2004; Schultz & Rilett, 2005). Hence, it is important to consider all
these model parameters simultaneously with the aim to capture their intricate effects,
thereby enabling convergence and stability of the solutions (see Appendix A).

A broad number of optimization algorithms, ranging from genetic algorithms to
finite difference stochastic approximation, can be used to determine an adequate set of
model parameters for a particular traffic system (Breski et al., 2006; Brockfeld et al.,
2005; Cunha, Bessa Jr., & Setti, 2009; Kim & Rilett, 2003; Toledo, Ben-Akiva, Darda,
Jha, & Koutsopoulos, 2004). For example, the sequential simplex algorithm has been
used to calibrate parameters for car-following, acceleration/deceleration, and lane-

Howaro R. HuGHES
College of 1

ENGINEERING



UNLV

changing behavior(Kim & Rilett, 2003). However, only a subset of parameters was
considered. Moreover, parameters associated with infrastructure and vehicle performance
were not considered. The algorithm provided adequate results under congested
conditions. However, under low-congestion conditions, manual calibration provided
better results.

Genetic Algorithms (GA) were used for the calibration of global and local
capacity and occupancy parameters (Jha et al., 2004; Ma, Dong, & Zhang, 2007). A
sequential approach was used to update global and local parameters. Simultaneous
Perturbation Stochastic Approximation (SPSA) algorithms also have been proposed. J.
Lee used SPSA algorithms to calibrate model parameters and demand patterns, using
various stages(Lee, 2008). The calibration capabilities of GA and SPSA algorithms were
shown to be similar; however, SPSA algorithms were less computationally intensive (Ma
et al., 2007). In addition, SPSA and Finite Difference Stochastic Approximation
algorithms have been proposed for the calibration of demand and supply parameters
(Balakrishna, Antoniou, Ben-Akiva, Koutsopoulos, & Wen, 2007). However, driver
behavior parameters were pre-calibrated, and the calibration was based only on link
sensor counts. Other important performance measures, such as speed, were not
considered. Previous studies did not simultaneously calibrate all model parameters while
concurrently considering multiple performance measures, such as link counts and speed.

This study seeks to develop a methodology to calibrate simultaneously all model
parameters and demand patterns based on link counts and speeds. This is in contrast with
previous studies in which either only a subset of model parameters were considered, a

single performance measure was used, or demand patterns were pre-calibrated. The
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proposed methodology uses a SPSA algorithm to determine an adequate set of all model
parameters and turning volumes.

The SPSA was chosen based on its computationally efficiency and ability to
handle large numbers of parameters (Balakrishna et al., 2007; Chin, 1997; Lee, 2008;
Maryak & Spall, 2005; Spall, 1998a; Spall, 2003; Spall, 1995; Spall, 1998b). Only two
traffic flow simulation evaluations per iteration of the SPSA are required to update all
model parameters. Running a low number of traffic flow simulations represents important
savings in terms of time and other resources. Comparative studies between SPSA and
other algorithms could be found in the literature (Balakrishna et al., 2007; Chin, 1997;
Spall, 2003). In addition, the SPSA algorithm was used to calibrate and optimize various

transportation applications (Lee, 2008; Lee & Ozbay, 2009; Ma et al., 2007).
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CHAPTER 2 METHODOLOGY

Formulation of the Calibration Problem

The calibration problem for all model parameters, 9, is formulated using a mathematical
programming approach. The analysis period is divided into a number T of discrete time
periods. The objective function, normalized root mean square (NRMS), as denoted by
Equation (2.1), is the sum over all calibration time-periods of the average of the sum over
all links | of the root square of the square of the normalized differences between actual
and simulated link counts and speeds. The normalization enables the consideration of
multiple performance measures, in this case, link counts and speeds. The calibration

problem is formulated as follows:

Minimize NRMS =

. S-S0 .,
=y w J(Z, el Vw)')) ORI S DR

n i

subject to:
Lower bound < 8 < Upper bound

where:

Vi= actual link counts for link i

V(9 = simulated link counts for link i

Si = actual speeds for link i

S0 = simulated speeds for link i

n= total number of links in the model
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T = total number of time periods

W = weight used to assign more or less value to counts or speeds

Calibration criteria
The calibration criteria for this study were based on guidelines from the Federal Highway
Administration, as summarized in Table 1.

Table 1. Calibration Guidelines for Simulation Models of Microscopic Traffic Flow

_ [?lfference _between actual and <5% For all links
Traffic simulated link counts
Volumes - For at least 85%
GEH statistic <5 of the links
where:
(A )2

Vi= actual link counts at the link i

V(9)i =simulated link counts at the link i

Simultaneous Perturbation Stochastic Approximation algorithm

The SPSA algorithm is an iterative approach that uses gradient estimations of the
objective function to determine an optimal solution. Details of its implementation are
provided by James C. Spall (Spall, 1998a; Spall, 2003; Spall, 1995; Spall, 1998b).

Characteristics of the SPSA Algorithm

In each iteration of SPSA, the vector of model parameters is updated using Equation

(2.3):
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Ok+1 = Ok — A gr bk (2.3)
where,

0,1 = vector of updated parameters at iteration k+1
0,.= vector of initial parameters at iteration k+1
a,=gain coefficient at iteration k+1 calculated using Equation (2.4)

9 0= estimated gradient at iteration k+1.

a

a; = m (2.4)

wherea, A, and a are empirical non-negative coefficients. These coefficients affect the
convergence of the SPSA algorithm.
The simultaneous perturbation and gradient estimate are represented by g,6;, and

is calculated using Equation (2.5):

V(Or+clr)—y(Or—Crly) A — _ — -
gy =—— RZCk = [Aid Az iz e Digp]T (2.5)

Here, cy is calculated using Equation (2.6), where ¢ and Y are empirical non-negative

coefficients:

C
Ci, =
7 (k)Y

(2.6)

T
The elements in the random perturbation vector Ay = [A,;ll, A,:Zl, A,::'}, . A,};] are

Bernoulli-distributed, with a probability of one-half for each of the two possible

outcomes.
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Algorithmic Steps

The SPSA algorithm is implemented using the following steps (Spall, 2003):

Step 1: Set counter k equal to zero. Initialize coefficients for the gain function a, A, and
o and calibration parametersé,.

Step 2: Generate the random perturbation, vector Ay.

Step 3: Evaluate the objective function, plus and minus the perturbation.

Step 4: Evaluate the gradient approximation gibk.

Step 5: Update the vector of calibration parameters using Equation (2.3) along with the
corresponding constraints denoted by Equation (1).

Step 6: Check for convergence. If convergence is achieved, stop; otherwise, set counter

k =k + 1 and repeat Steps 1-6.

Convergence of the calibration
Convergence is reached when the inequality in Equation (2.9) is satisfied or a user pre-
specified maximum number of iterations is reached. At convergence, the calibration

criteria are expected to be satisfied or a significantly better model is obtained.

>K_n/(NRMS 4y —NRMS))?
N

(2.9)

where,

NRMS,,= average NRMS of the last k-N iterations
NRMS, = NRMS at k iteration

k= iteration counter

N= pre-specified integer

p = pre-specified convergence condition
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CHAPTER 3 SOFTWARE IMPLEMENTATION

A software tool was developed to implement the proposed calibration methodology. It
was developed using a basic layered architecture were each layer handles a group of
related functions. The tool contains four different layers: (i) a Graphical User Interface
(GUI); (ii) a Domain; (iii) a Persistence; and (iv) a Facade. The GUI enables the user to
interact with the entire software tools. It provides a user-friendly mechanism to create and
edit calibration workspaces. The Domain performs all the calibration calculations
involving the minimization of the objective function. The Persistence reads the input
information and output an update model including the new set of adjusted model
parameters. The Facade takes all the user inputs through the GUI and performs validation
and consistency-checking. In addition, the Facade provides the required interaction
between the Domain and the Persistence. The tool was developed in Java; it includes
5801 lines of code. Figure number 1 represents the class diagram of the calibration

software. Figure 2 represents a detailed class diagram
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GUI

Facade

—|

Domain

(i— |

Persistence

Figure 1.Class Diagram.
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<CFACADE>>
Facade

#:int
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44 double
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4 double
+gama; double
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+Rms: List<double>

Parameters Set: ParametersSet
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~Actual_Data Fresim: ActuaDataFresin
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nenParametersSet(Strng] [ ps): bookean
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HoadParametersSet(String path): bookean
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HoadActuaDataFresin{Sring path): boolean
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Hoop(String pathtr): bockean

SCPERSISTENCE>>
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sstringToNumberdu(Sting st it

CCPERSISTENCE>>
InputPersistence

<<DOMAIN>»
ParametersSet
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ActualDataletsim
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ActualDataFresim

5 Parameters: Sting[n. )

-ADN Data: Strng(n, 4]

-A0F Data: Strng[n. 4

+ParametersSetStrng 1. 9]
HParametersSet(): vod

+etPS Parameters(): Stng[n. )
+6¢PS Parameters(Strng[n. 5]): vod
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10etADN Data(): Stingln. 4
45etADN Data(Strng[n 4): void
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Figure 2. Detailed Class Diagram.
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CHAPTER 4 EXPERIMENTS AND RESULTS

Micro-simulation Model

This study tested the proposed methodology using CORSIM models, which integrates
two different models to represent a complete traffic system, FRESIM for freeways and
NETSIM for surface streets (McTrans Center, 2010). Traffic Analysis Toolbox Volume
IV: Guidelines for Applying CORSIM Micro-simulation Modeling Software(Holm et al.,
2007) described a procedure for the calibration of micro-simulation traffic flow models,
with a focus on CORSIM. The suggested procedure in these guidelines used three
sequential and iterative steps, including the calibration of (i) capacity at key bottlenecks,
(ii) traffic volumes, and (iii) system performance. However, the guidelines did not
suggest any particular methodology to perform the calibration in an efficient and
effective manner. For example, issues associated with convergence and stability of the
solutions were not discussed. Nevertheless, alternative studies proposed and developed
practical procedures to accelerate the calibration process, which typically is time
consuming(Hourdakis, Michalopoulos, & Kottommannil, 2003). However, stability and

convergence still are issues.

Results
Three experiments were designed to test the capabilities of the proposed methodology to
calibrate based on vehicle counts and speeds simultaneously.

First Experiment: Pyramid Highway in Reno, NV

In this experiment a CORSIM model for a portion of the Pyramid Highway in Reno, NV,

was calibrated. This portion of highway is located between Milepost 1.673 and 5.131.
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This calibration focused on speeds and link counts for the entire simulation. The weight
factor in the objective function was set to 0.7. The model included 126 arterial links, and
no freeways were included. Link counts and speeds were only available for 45 of these
links. Coefficients for the SPSA algorithm were selected using guidelines from the
literature (Spall, 2003). These values affected the convergence of the algorithm.

Figure 3 (a) shows aGoogle map of the Pyramid Highway. Figure 3 (b)

illustrates the corresponding CORSIM model.

£
Lazy 5 =
Regional Park o Lawk
cD)
H‘gh\a“n g Vista Blvd
g &
&
Los Altos P 7 >
@) g 054/’%
%
g &
i %, z
€ PahRah g ANG®
Mountain Park
Shadow %
2 Mountain Park
(@) (b)
Figure 3. (a)Pyramid Highway, Reno, NV and (b )the CORSIM model for Pyramid
Highway.

Figure 4 illustrates how the objective function was minimized. The noisy trajectory was a

consequence of the stochastic perturbation applied to all calibration parameters to obtain
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the gradient approximation at each iteration. The characteristics of the traffic model made
the function noisier due to rounding. The NRSM was 0.042 before calibration and 0.010
after calibration. The calibration process stopped around the 80" iteration, when a stable

region was found.

0.05
0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01
0.005
0

Normalized root mean square

1 21 41 61 81

Iteration

Figure 4. Objective function for the first experiment.

Figure 5 shows the actual and simulated counts before calibration. These values
present poor initial conditions, especially for the volumes over 1500 vehicles per hour
(vph). Figure 6 shows the actual and simulated counts after calibration. The proposed
methodology is able to reduce the gap between actual and simulated counts. The results
illustrate larger improvements for the large counts. Figure 6 clearly shows that links with
counts over 1500 vph were improved, while the values with good initial conditions were

slightly modified.
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1000 C
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Figure 5. Actual vs. simulated counts before calibration.
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2500 ;
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1000 .
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Figure 6. Actual vs. simulated counts after calibration.

Howarp R. HuGHEs

College of 14

ENGINEERING

UNLV




Figure 7 shows actual and simulated speeds before calibration. As illustrated,
simulated speeds are far from actual speeds. The simulation model underestimates many

speed values.

80
70
60
50 X
40 %
30 . .

Model speed

20

10 .

0O 10 20 30 40 50 60 70 80

Actual speed

Figure 7. Actual vs. simulated speeds before calibration.

Figure 8 shows the speeds after calibration. In this case the speeds were improved
for 23 of the links. The rest of the speeds were kept close to the initial values with a
variation less than 1 mile per hour (mph). This can be associated to the relative large
value of the weight assigned to the counts in the objective function (W = 0.7). In addition,
the experimental results show that link counts are more sensitive than speeds to changes
in the calibration parameters. Figure 8 shows the GEH statistics for the models before
and after calibration. It is clear that the calibration model significantly improves the GEH
statistic. All the links reach a GEH statistic less or equal to 5, thereby satisfying the

calibration criteria. The results show that the three calibration criteria are satisfied. In
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general, the proposed methodology was able to improve significantly the model

outcomes.

80
70
60
. W
50 ’,
8 o ¢ 3 ’,
2 40 A
— o *
D
_8 30 . ¢
P s,
20 ¢
10
0
0 10 20 30 40 50 60 70 80
Actual speed

Figure 8. Actual vs. simulated speeds after calibration.

Table 2 summarizes the calibration results for the first experiment. The total
difference between actual and simulated link counts is 6% for all links in the network,
and the GEH statistic is less than 5 for all links; therefore, the calibration criteria is
satisfied. Table 2 shows the GEH statistics for the model before and after calibration. It is
clear that the calibration significantly improves the GEH statistic. The results show that

the two calibration criteria are satisfied.
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Figure 9. GEH Statistics for the first experiment.

Table 2. Summary of Calibration Results for the Second Experiment

NRMS | Total link counts GEH
Before calibration 0.042 45,359 <5 for 74% of the cases
After calibration 0.010 55,882 < 5 for 100% of the cases
Actual 59,610

Second Experiment: 1-75 in Miami, FL

In this experiment, a portion of I-75 in Miami, FL was calibrated. A total of 375 freeway

ramps and 334 arterial links were included in the model. Data was available for 353

freeway ramps and 59 arterial links for a morning peak period of one hour. The

coefficients of the SPSA algorithm were the same as those used in the first experiment.

All the calibration parameters in the network were included as well as the turning

volumes for freeways and arterials.
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Figure 10 (a) shows the Google map of I-75 highway in Miami, FL. Figure 10

(b) illustrates the corresponding CORSIM model.
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Figure 10. (a)l-75 in Miami, FL, and(b) the 1-75 CORSIM model.
Figure 11 illustrates the trajectory of the objective function for this experiment.

The NRMS goes from 0.270 to 0.245.
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Figure 11. Objective function for the second experiment.

Figure 12 illustrates the link counts for the ramp segments in the model before
calibration. Figure 13 shows the link counts for the ramps after calibration. These results
clearly show that the calibration process significantly reduces the difference between
actual and simulated link counts.

Figure 14 shows the GEH statistics for the ramps in the model before and after
calibration. It is clear that the calibration model significantly improves the GEH statistic.
99.6% of the links reach a GEH statistic less or equal to 5, thereby satisfying the

calibration criteria.
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Figure 12. Links counts before calibration for freeway ramps in the network.
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Figure 13. Links counts after calibration for freeway ramps in the network.
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Figure 14. GEH Statistics for the arterial part of the second experiment.

Figure 15 illustrates the link counts for the arterials before calibration. Figure 16
shows the link counts for the ramps after calibration. These results show that there is
significant improvement for links with large link counts.

Figure 17 shows the GEH statistics for the ramps in the model before and after
calibration. The calibration model significantly improves the GEH statistic. Seventy-six
percent (76%) of the links reach a GEH statistic less or equal to 5.

Figure 13 and Figure 16 together show that the calibration methodology provides
better results for freeway ramps than for arterials. This could be a consequence of having
more data available for freeway ramps than for arterials, thereby giving more weight to

the ramps.
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Figure 15. Links counts before calibration for the arterials in the network.
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Figure 16. Links counts after calibration for the arterials in the network.
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Figure 17. GEH Statistics for the freeway part of the second experiment.

Table 3 shows the ‘before’ and ‘after’ GEH statistics. As illustrated, the calibration

improves the statistics, especially for the highest GEHs. However, some GEH values

need to be improved because they are over 5.

Table 3. Summary of Calibration Results for the Second Experiment

ENGINEERING

Total link counts GEH
(vph)

Before calibration 234,928.2 <5 for 86% of the cases
FREEWAY After calibration 257,454.1 < 5 for 99.6% of the cases

Actual 271,908

Before calibration 61,097 <5 for 66% of the cases
ARTERIALS After calibration 68,927 <5 for 76% of the cases

Actual 80,524
College of 23




Third Experiment: Network from McTrans Sample Data Sets

In this experiment, a network with arterials from McTrans official web page was
calibrated. A total of 20 arterial links were included in the model. Data was available for
all arterial links.

The total simulation time was 1hour divided in 4 time periods of 15 minutes
each. In this experiment, all parameters for all links for all four time periods were
updated. The coefficients of the SPSA algorithm were the same as those used in the
previous experiments. All the calibration parameters in the network as well as the turning
volumes were included.

Figure 18 shows the CORSIM model for this experiment.
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Figure 18. CORSIM Model for the third experiment.
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Figure 19 illustrates the trajectory of the objective function corresponding to the

third experiment. The initial NRMS value is 0.51, while the minimum obtained after 100

iterations of the optimization algorithm is 0.09.
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Figure 19.0bjective function for the third experiment.

Figure 20, Figure 21 and Figure 22, respectively, illustrate the link counts before and

after the calibration, the speeds, and GEH statistics results for all links in the network for

the first time period of the simulation. These results clearly show that the calibration

process significantly reduces the difference between actual and simulated link counts.
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Figure 20. Actual vs. simulated counts (a)before and (b)after calibrationfor time periodl.
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Figure 21. Actual vs. simulated speeds (a)before and (b)after calibration for time period 1.
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Figure 22. GEH Statistics for time period 1 of the third experiment.

Similar to Figure 20 to Figure 22, Figure 23 to Figure 32 show the link counts,
speeds, and GEH statistics results for all links in the network for the second, third, and
fourth time period, respectively, of the simulation. The calibrated results are significantly
closer to the actual values, relative to the ‘before calibration’ results. In addition, all links

have a GEH statistic below the threshold limit of 5.
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Figure 23. Actual vs. simulated counts (a) before and (b) after calibration for time period 2.
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Figure 24. Actual vs. simulated speeds (a)before and (b)after calibration for time period 2.
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Figure 25. GEH Statistics for time period 2 of the third experiment.
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Figure 26. Actual vs. simulated counts before (a) and after (b) calibration for time period 3.
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Figure 27. Actual vs. simulated speeds before (a) and after (b) calibration for time period 3.
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Figure 28. GEH Statistics for the third experiment time period 3.
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Figure 29. Actual vs. simulated counts before (a) and after (b) calibration for time period 4.
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Figure 30. Actual vs. simulated speeds before (a) and after (b) calibration for time period 4.
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Figure 31. GEH Statistics for the third experiment time period 4.
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In this experiment, optimal parameters for the model were determined in order to
reproduce time-dependent link counts and speeds. The calibrated parameters took a single
value during the entire simulation process; that is, they were not time-dependent. In
contrast, the link counts were time-dependent. These results illustrate the ability of the
proposed calibration methodology to adjust model parameters so as to calibrate the time-
dependent link counts.

The summary of the results are showed in Table 4.

Table 4. Summary of the Calibration Results for the Third Experiment

Total link
counts GEH
(vph)
Before calibration | 10,126 <5 for 10% of the cases
Time period 1 | After calibration 17,136 < 5 for 100% of the cases
Actual 17,276
Before calibration | 13,498 <5 for 10% of the cases
Time period 2 | After calibration 22,625 < 5 for 100% of the cases
Actual 22,891
Before calibration | 10,502 <5 for 0% of the cases
Time period 3 | After calibration 17,820 < 5 for 100% of the cases
Actual 18,767
Before calibration | 10,533 <5 for 0% of the cases
Time Period 4 | After calibration 17,939 < 5 for 95% of the cases
Actual 19,013
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Calibration and Validation

In order to validate calibration results, a new calibration was performed. The Reno
Network from the first experiment was used for this validation. In the first experiment
this network was calibrated using 45 link counts. The GEH statistics were lower than 5
for all the cases. In addition 23 link speeds were improved and the rest kept close to the
initial values. In this validation the same network is calibrated using only 25 actual link
counts and speeds. After the calibration, the GEH statistics were lower than 5 for 100%
of the links, speeds showed similar results as the calibration of the first experiment with
26 link speeds improved. Figures 32 and 33 show the before and after vehicle counts and
GEH statistics, respectively. These results imply that the proposed methodology has the

capability provide adequate performance for an actual calibration effort.
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Figure 32. Actual vs. simulated counts before (a) and after (b) calibration.
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Figure 33. GEH Statistics for the validation
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK

Conclusions

This study proposes a methodology for the calibration of micro-simulation traffic flow
models. The design and implementation of this methodology seeks to enable the
calibration of generalized models. The proposed calibration methodology is being
developed independent of characteristics for any particular microscopic traffic flow
simulation model. At this point in the model development, the proposed methodology
minimizes the difference between actual and simulated time dependent link counts and
speeds by considering all model parameters and turning volumes simultaneously.

The methodology used the Simultaneous Perturbation Stochastic Approximation
(SPSA) algorithm to determine the calibrated set of model parameters. Previous studies
have proposed the use of the SPSA algorithm for the calibration of vehicular traffic
systems. However, few parameters were considered, and the calibration typically was
based on a single performance measure, usually link counts. The simultaneous
consideration of all model parameters and multiple performance measures is motivated
by issues associated with convergence and stability. During the experiments, the
proposed algorithm always reached convergence and stability.

The same set of calibration parameters was used in all the experiments.
Therefore, any effort during parameter selection has been eliminated. The results were
improved for the entire model. All calibrated parameters were within reasonable
boundaries. Similarly, no irregularities were observed using the graphical user interface.

The proposed methodology was tested using CORSIM models. However, there is
nothing preventing the implementation of the proposed methodology for the calibration
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of other models. Three different vehicular traffic systems were calibrated, taking into
consideration all their model parameters by using various performance measures,
including link counts and speeds. The first experiment included arterials, using as
performance measures link counts and speeds. The second system included both arterials
and freeways. Considering arterials and freeways represented a significant challenge
because two different models with different parameters needed to be considered
simultaneously. The third experiment included time-dependent link counts and speeds for
four time periods during this experiment; in addition, global, individual, and time-
dependent parameters were considered.

The experimental results illustrated the effectiveness of the proposed methodology.
The three vehicular traffic systems used in this study were successfully calibrated;
specifically, the calibration criteria were satisfied after the calibration was performed.
The quality of the second vehicular traffic system improved significantly. However,
further sensitivity analysis of the parameters used by the SPSA algorithm is required to
achieve better results and satisfy the calibration criteria. Further, as the number of
parameters required for calibration increases, the complexity of the optimization problem
also increases as well as the complexity to determine the set of required optimization

coefficients.
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Future Work

The calibration tool developed as part of this study used an optimization algorithm that
required a set of coefficients to find the appropriate set of CORSIM model parameters. A
time-consuming sensitivity analysis of these coefficients was required to achieve desired
results.

A bi-level optimization framework is required to enable the simultaneous
calibration of traffic flow and SPSA parameters. The first level of the bi-level framework
represents the existing calibration tool developed as part of the existing project, whose
objective was the calibration of CORSIM models under saturated conditions. Here, and
Simultaneous Perturbation Stochastic Approximation (SPSA) optimization algorithm was
used to determine the appropriate calibration parameters. The second level of the
proposed bi-level framework corresponds to future research, whose objective is to
automate the sensitivity analysis that is required to find the right set of optimization
coefficients for the SPSA algorithm.

Figure 34 illustrates a potential implementation of the proposed bi-level framework
for the simultaneous calibration and sensitivity analysis. The white boxes represent the
existing calibration tool developed under the existing project. The gray boxes represent
the proposed approach for the sensitivity analysis that will be developed as part of the
new research project. A pseudo-fuzzy control process is proposed to find the right set of
coefficients that will enable the desired calibration. The fuzzy control process has the
capability to capture the learning process that a user has obtained after calibrating many

networks using the calibration tool. That is, the knowledge from the calibration tools
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development can be transferred to the fuzzy control process in order to enable the

determination of the right set of optimization coefficients.

Inputs and
Parameters for
Traffic Flow
1 SPSA Algorithm
Tsmﬁa':l'g,‘f Adjusted Traffic
Flow Model
Parameters

Convergence?

Figure 34. Bi-level optimization framework for calibration and sensitivity analysis.
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APPENDIX A CALIBRATION PARAMETERS

Calibration Parameters for CORSIM Models

The calibration of CORSIM models can involve Driver Behavior and Vehicle
Performance parameters (McTrans Center, 2010).These parameters can be defined
exclusively for surface streets or freeways or both models simultaneously. In addition, the
resolution of these parameters can be global or link-based defined. This study considered
all types of parameters and levels of resolution. In addition, parameters related to demand
patterns were included. Tables A4 and A5 show the different parameters used for the
calibration of CORSIM models. Several studies have included sensitivity analysis of the
calibration parameters for CORSIM models. These studies have showed that maximum
the parameters associated with ‘non emergency deceleration rates’, for example, do not
affect the outcomes of a specific FRESIM model. However, the specific vehicle
distributions improve the accuracy of that model (Schultz &Rilett, 2004). Driver behavior
parameters were found to affect the time to breakdown and the ramps flow. In contrast,
flow parameters showed to produce low effects (Kondyli et al., 2012). The calibration
parameters have different effects for specific networks and conditions. The interaction
between these parameters is very complex and might vary from model to model. Our
methodology decreases the effort during the selection of the calibration parameters by
creating a default set of parameters and modifying their defaults ranges in order to avoid
unrealistic values. Tables A7 to A9 show examples of the parameters and the ranges used
for the experiments conducted in this project. Due the large number of parameters, these

tables include only a sub set of the total parameters calibrated during the experiments.
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Table A5. Calibration Parameters for NETSIM Models

NETSIM Model — Surface streets

Driver Behavior Vehicle Performance Demand Patterns
e Queue discharge headway e Speed and e Surface street turn
e Start-up lost time acceleration movements
e Distribution of free-flow speed by characteristics
driver type e Fleet distribution
e Mean duration of parking and passenger
occupancy

maneuvers
e Lane change parameters

e Maximum left and right turning
speeds

e Probability of joining spillback

e Probability of left turn jumpers and
laggers

e Gap acceptance at stop signs

e (Gap acceptance for left and right
turns

e Pedestrian delays
e Driver familiarity with their path

Table A6. Calibration Parameters for FRESIM Models
FRESIM Model - Freeways

Driver Behavior Vehicle Performance Demand
Patterns
e Mean start-up delay at ramp meters | ¢ Speed and e Freeway turn
o Distribution of free flow speed by acceleration movements
driver type characteristics
e Incident rubbernecking factor * Fleetdistribution

and passenger
occupancy

e Maximum
deceleration values

e Car-following sensitivity factor

e Lane change gap acceptance
parameters

e Parameters that affect the number
of discretionary lane changes
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Table A7. Examples of Calibration Parameters for the First Experiment

Lower | Upper | Value before | Value after
Number | Model Parameter Units Link bound | bound | calibration calibration

1 | NETSIM | Mean value of start-up lost time Tenths of seconds 1-26 10 60 40 18

2 | NETSIM | Mean value of start-up lost time Tenths of seconds 1-41 10 60 42 12

3 | NETSIM | Mean value of start-up lost time Tenths of seconds 2-38 10 60 40 14

4 | NETSIM | Mean value of start-up lost time Tenths of seconds 3-27 10 60 42 38

5 | NETSIM | Mean value of start-up lost time Tenths of seconds 4-33 10 60 42 32

6 | NETSIM | Mean queue discharge headway Tenths of seconds 4-35 14 60 38 56

7 | NETSIM | Mean queue discharge headway Tenths of seconds 5-42 14 60 36 30

8 | NETSIM | Mean queue discharge headway Tenths of seconds 6-48 14 60 40 46

9 | NETSIM | Mean queue discharge headway Tenths of seconds 7-18 14 60 38 33

10 | NETSIM | Mean queue discharge headway Tenths of seconds 7-19 14 60 36 42
Percentage of drivers that know

11 | NETSIM | only one turn movement Percentage 0 100 5 3
Percentage of drivers that know

12 | NETSIM | two turn movement Percentage 0 100 95 97
Free-Flow speed adjustment for

13 | NETSIM | driver type 1 Percentage 0 1000 75 65
Free-Flow speed adjustment for

14 | NETSIM | driver type 2 Percentage 0 1000 85 75
Free-Flow speed adjustment for

15 | NETSIM | driver type 3 Percentage 0 1000 91 103

16 | NETSIM | Left-Turning traffic Percentage 10-11 0 9999 92 183

17 | NETSIM | Trough traffic Percentage 10-11 1 9999 1648 1878

18 | NETSIM | Right turning traffic Percentage 10-11 0 9999 0 0

19 | NETSIM | Diagonal-Turning traffic Percentage 10-11 0 9999 0 0

20 | NETSIM | Left-Turning traffic Percentage 11-10 0 9999 0 0

21 | NETSIM | Trough traffic Percentage 11-10 1 9999 636 836

22 | NETSIM | Right turning traffic Percentage 11-10 0 9999 37 7
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23 | NETSIM | Diagonal-Turning traffic Percentage 11-10 0 9999 0 0
24 | NETSIM | Left-Turning traffic Percentage 2-3 0 9999 0 0
25 | NETSIM | Trough traffic Percentage 2-3 1 9999 2156 2009
26 | NETSIM | Right turning traffic Percentage 2-3 0 9999 104 93
27 | NETSIM | Diagonal-Turning traffic Percentage 2-3 0 9999 0 0
Duration of a lane-change
28 | NETSIM | maneuver Seconds 2 5 2 5
Mean time for a driver to react to
sudden deceleration of the lead
29 | NETSIM | vehicle Tenths of seconds 5 15 5 8
30 | NETSIM | Acceptable gap for driver type 1 | Tenths of seconds 45 67 45 63
31 | NETSIM | Acceptable gap for driver type 2 | Tenths of seconds 40 60 40 58
32 | NETSIM | Acceptable gap for driver type 2 | Tenths of seconds 37 55 37 52
College of 40
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Table A8. Examples of Calibration Parameters for the Second Experiment

Lower | Upper | Value before | Value after
Number | Model Parameter Units Link bound | bound | calibration calibration
Total number of vehicles with a thought
1 | FRESIM | movement Percentage | 416-9 0 9999 70 81
Total number of vehicles exiting at the
2 | FRESIM | off-ramp Percentage | 416-9 0 9999 30 19
Total number of vehicles with a thought
3 | FRESIM | movement Percentage | 14-15 0 9999 70 84
Total number of vehicles exiting at the
4 | FRESIM | off-ramp Percentage | 14-15 0 9999 30 16
Total number of vehicles with a thought
5 | FRESIM | movement Percentage | 28-29 0 9999 70 91
Total number of vehicles exiting at the
6 | FRESIM | off-ramp Percentage | 28-29 0 9999 30 9
Time to complete a lane changing Tenths of
7 | FRESIM | maneuver seconds 10 40 20 22
Minimum separation of generation Tenths of
8 | FRESIM | vehicles seconds 10 20 16 13
Hundreds
9 | FRESIM | Car-following factor for vehicle type 1 of seconds 100 150 125 104
Hundreds
10 | FRESIM | Car-following factor for vehicle type 2 of seconds 92 138 115 121
Hundreds
11 | FRESIM | Car-following factor for vehicle type 3 of seconds 84 126 105 122
Minimum acceleration lane speed to Miles per
12 | FRESIM | trigger upstream anticipatory lane changes | hour 5-6 37 47 43 44
Minimum acceleration lane speed to Miles per
13 | FRESIM | trigger upstream anticipatory lane changes | hour 17-18 37 47 43 46
Minimum acceleration lane speed to Miles per
14 | FRESIM | trigger upstream anticipatory lane changes | hour 35-36 37 47 43 44
Minimum acceleration lane speed to Miles per
15 | FRESIM | trigger upstream anticipatory lane changes | hour 60-61 37 47 43 44
Minimum acceleration lane speed to Miles per
16 | FRESIM | trigger upstream anticipatory lane changes | hour 72-74 37 47 43 44
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Tenths of

17 | NETSIM | Mean value of start-up lost time seconds 349-350 10 60 30 35
Tenths of

18 | NETSIM | Mean value of start-up lost time seconds 350-349 10 60 30 14
Tenths of

19 | NETSIM | Mean value of start-up lost time seconds 350-351 10 60 30 39
Tenths of

20 | NETSIM | Mean queue discharge headway seconds 349-350 14 60 38 49
Tenths of

21 | NETSIM | Mean queue discharge headway seconds 350-349 14 60 38 49
Tenths of

22 | NETSIM | Mean queue discharge headway seconds 350-351 14 60 38 31

23 | NETSIM | Left-Turning traffic Percentage | 350-351 0 9999 25 49

24 | NETSIM | Trough traffic Percentage | 350-351 1 9999 40 49

25 | NETSIM | Right turning traffic Percentage | 350-351 0 9999 35 37

26 | NETSIM | Diagonal-Turning traffic Percentage | 350-351 0 9999 0 0

27 | NETSIM | Left-Turning traffic Percentage | 352-351 0 9999 33 28

28 | NETSIM | Trough traffic Percentage | 352-351 1 9999 43 35

29 | NETSIM | Right turning traffic Percentage | 352-351 0 9999 23 37

30 | NETSIM | Diagonal-Turning traffic Percentage | 352-351 0 9999 0 0

31 | NETSIM | Duration of a lane-change maneuver Seconds 2 5 3 5
Mean time for a driver to react to sudden Tenths of

32 | NETSIM | deceleration of the lead vehicle seconds 5 15 10 5
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Table A9. Examples of Calibration Parameters for the Third Experiment

Time | Lower | Upper | Value before | Value after
Number | Model Parameter Units Link | period | bound | bound | calibration calibration
Mean value of start-up lost
1| NETSIM | time Tenths of seconds | 11-21 1 10 60 50 43
Mean value of start-up lost
2 | NETSIM | time Tenths of seconds | 21-31 1 10 60 10 57
Mean value of start-up lost
3 | NETSIM | time Tenths of seconds | 41-31 1 10 60 50 15
Mean queue discharge
4 | NETSIM | headway Tenths of seconds | 11-21 1 14 60 18 43
Mean queue discharge
5 | NETSIM | headway Tenths of seconds | 21-31 1 14 60 90 22
Mean queue discharge
6 | NETSIM | headway Tenths of seconds | 41-31 1 14 60 18 20
Mean value of start-up lost
7 | NETSIM | time Tenths of seconds | 11-21 2 10 60 50 52
Mean value of start-up lost
8 | NETSIM | time Tenths of seconds | 21-31 2 10 60 10 59
Mean value of start-up lost
9 | NETSIM | time Tenths of seconds | 41-31 2 10 60 50 20
Mean queue discharge
10 | NETSIM | headway Tenths of seconds | 11-21 2 14 60 18 48
Mean queue discharge
11 | NETSIM | headway Tenths of seconds | 21-31 2 14 60 90 31
Mean queue discharge
12 | NETSIM | headway Tenths of seconds | 41-31 2 14 60 18 23
Mean value of start-up lost
13 | NETSIM | time Tenths of seconds | 11-21 3 10 60 50 45
Mean value of start-up lost
14 | NETSIM | time Tenths of seconds | 21-31 3 10 60 10 63
Mean value of start-up lost
15 | NETSIM | time Tenths of seconds | 41-31 3 10 60 50 16
Mean queue discharge
16 | NETSIM | headway Tenths of seconds | 11-21 3 14 60 18 47
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Mean queue discharge

17 | NETSIM | headway Tenths of seconds | 21-31 3 14 60 90 17
Mean queue discharge

18 | NETSIM | headway Tenths of seconds | 41-31 3 14 60 18 18
Mean value of start-up lost

19 | NETSIM | time Tenths of seconds | 11-21 4 10 60 50 47
Mean value of start-up lost

20 | NETSIM | time Tenths of seconds | 21-31 4 10 60 10 51
Mean value of start-up lost

21 | NETSIM | time Tenths of seconds | 41-31 4 10 60 50 19
Mean queue discharge

22 | NETSIM | headway Tenths of seconds | 11-21 4 14 60 18 48
Mean queue discharge

23 | NETSIM | headway Tenths of seconds | 21-31 4 14 60 90 23
Mean queue discharge

24 | NETSIM | headway Tenths of seconds | 41-31 4 14 60 18 19
Percentage of drivers that
know only one turn

25 | NETSIM | movement Percentage 1 0 100 10 4
Percentage of drivers that

26 | NETSIM | know two turn movement Percentage 1 0 100 90 96
Free-Flow speed adjustment

27 | NETSIM | for driver type 1 Percentage 1 0 1000 75 63
Free-Flow speed adjustment

28 | NETSIM | for driver type 2 Percentage 1 0 1000 85 81
Free-Flow speed adjustment

29 | NETSIM | for driver type 3 Percentage 1 0 1000 91 97

30 | NETSIM | Left-Turning traffic Percentage 11-21 1 0 9999 19 28

31 | NETSIM | Trough traffic Percentage 11-21 1 1 9999 857 875

32 | NETSIM | Right turning traffic Percentage 11-21 1 0 9999 166 154

33 | NETSIM | Diagonal-Turning traffic Percentage 11-21 1 0 9999 0 0

34 | NETSIM | Left-Turning traffic Percentage 21-31 1 0 9999 48 39

35 | NETSIM | Trough traffic Percentage 21-31 1 1 9999 425 418

36 | NETSIM | Right turning traffic Percentage 21-31 1 0 9999 625 635
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37 | NETSIM | Diagonal-Turning traffic Percentage 21-31 1 0 9999 0 0

38 | NETSIM | Left-Turning traffic Percentage 41-31 1 0 9999 179 154

39 | NETSIM | Trough traffic Percentage 41-31 1 1 9999 550 523

40 | NETSIM | Right turning traffic Percentage 41-31 1 0 9999 424 397

41 | NETSIM | Diagonal-Turning traffic Percentage 41-31 1 0 9999 0 0
Duration of a lane-change

42 | NETSIM | maneuver Seconds 1 2 5 2 4
Mean time for a driver to
react to sudden deceleration

43 | NETSIM | of the lead vehicle Tenths of seconds 1 5 15 10 8
Acceptable gap for driver

44 | NETSIM | type 1 Tenths of seconds 1 45 67 56 58
Acceptable gap for driver

45 | NETSIM | type 2 Tenths of seconds 1 40 60 50 60
Acceptable gap for driver

46 | NETSIM | type 2 Tenths of seconds 1 37 55 46 48
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APPENDIX B CALIBRATION TOOL USER’S GUIDE

CORSIM categorizes all inputs into sets named, record types. Geometry, traffic flow, and
calibration parameters are grouped in different record types. Inputs are stored in text files
with extension .trf. A calibration tool was developed to implement the proposed
calibration methodology to update all parameters in the .trf file. A graphical user
interface (GUI) is used to facilitate the calibration process, which involves five steps as
depicted below.

Step 1: Network Selection

The first step requires locating the .trf file with the corresponding CORSIM model. From
the main menu, click on “Select a .trf File’ and browse to the location of the file in the
disk.

Step 1: Calibration Tool -Main Menu

Calibration Tool

1. Selecta tif File 2. Parameters Selection 3. Actual Data 4. Run Calibration 5. Print Results

» B @ & &

(Y o (Y o
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Browser

Calibration Tool

J @) (ED( e

Lookin: | Local Disk (C) = (@ |

ﬁ‘ AMD ﬁ Program Files ﬁ‘ Windows.old
ﬁ‘ eclipse ﬁ Program Files (x86)

ﬁ inetpub ﬁ SWsetup

(&5 Intel [ TsIS6 Projects

ﬁ Metgear ﬁ Users

ﬁ PerfLogs ﬁ Windows

File Name:

Files of Type: [trf

Step 2: Parameter Selection

In this step, the parameters for calibration are selected along with their initial values.
Default values are available through ‘Use Default Parameters’. However, these
parameters can be edited as desired or required by using the editor menu, as shown
below.

Parameter Selection
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E4 Calibration Tool i ] S
Tools
1. Selecta fFile 2. Parameters Selection 3. Actual Data 4. Run Calibration 4. Print Results
@ ) # | |
42
Status \/
Parameters Editor
B Parameters selection M= E |J B Parameters selection I [
File File
I 0 :J' Use Default Parameters Record Type: [0 = Use Default Parameters
Star Column: |1 = - StatColumn: |1 |¥ —
— Yolumes weight: 70 — Yolumes weight: 70
End Column |_1 X Add - End Colurmn |_1 X -
Speed weight: 30 Speed weight: 30
Minimun Yalue: 0 Minimurn e Y Ty ———— =]
Maximun Walue: 0 Maximun v
Delete Selected Row ed Row
%J 6 Default parameters successfully loaded 4J
Recordtype | Startcolumn | End column | Min Yalue | MaxValue | Record type Rlue |
11 A
OK
" oK
56
a1 1 4 2 )
21 g 8 g 15
g1 13 16 3 7
g1 17 20 7 13
a1 i 24 5] 10 v

Continue with The Calibration Process?

QK

Continue With The Calibration Process?

0K

Step 3: Loading of Actual Data

This step involves loading the actual vehicle counts and/or speeds for calibration. An

editable table is provided for the user to enter manually the available data. This table

allows saving and modifying values at any time.

Actual Data
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ECaIiblaliun Tool [-[O[X]
Tools
Calibration Tool
1. Selecta trfFile 2. Parameters Selection 3. Actual Data 4. Run Calibration 4. Print Results
e W A— F
3\)@% U r rr' |
. TSR L
2
Status ¢ ¢
Data Editor
File
MNETSIM data FRESIM data
Time Period: Time Period:
i 1]
nade 1 | node 2 | valumefuph) | speeds{mph) | node 1 | node 2 | valumefmh) | speeds{m.. |
2026 437 -1 R 4| || 281 1 600.0 -1 F]
437 438 o A 1 2 570.0 i )
438 137 R e a0 3 5700 -1
436 400 33.0 —1 12 4 850.0 &l
400 436 R Kl 4 i 850.0 -1
401 402 2361.0 o 5 8 850.0 )
402 401 3227.0 -1 8 7 950.0 -
8027 439 -1 i 7 3 1050.0 i
439 138 1 9 416 9 11730 -1
438 439 R 9 9 10 936.0 -1
138 1m 0] -1 10 " 936.0 -1
401 438 R 4 11 12 7500 -1
401 440 R R 12 13 750.0 -1
140 401 17.0 -1 13 14 7500 l
440 141 R 9 ) 14 15 750.0 -1
441 140 R 4 15 18 a00.0 -1
028 141 R 1 16 17 a00.0 -1
407 447 R 4 17 18 1200.0 -1
143 402 19310 -1 18 18 12000 -1
8029 442 R 1 19 20 1200.0 -1
a030 444 R 1 20 21 12000 -1
144 143 R 4 A 22 12000 -1
443 444 R 4 22 23 1200.0 -1
443 402 5440 = L 23 24 1200.0 -1 <
an? 147 -1 1 v |24 25 12000 -1 b
Continue with the calibration process?
0K Cancel |
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Once the actual data is uploaded, ‘Run Calibration’ is used to execute the proposed
calibration approach to find the set of parameters that minimizes the difference between
actual and simulated network states.

Run Calibration

E Calibration Tool [_O]=]

Tools

Calibration Tool

1. Selecta triFile 2. Parameters Selection 3. Actual Data 4. Run Calibration 4. Print Results

Frl

a

Status \/ V «

Step 5: Visualization of Results

Once the search process has determined the desired set of parameters, charts are
generated to illustrate the quality of calibrated model relative to the actual data. Three
sets of graphs are generated, including the GEH statistics, the ‘before” and ‘after’ counts,
and the speeds before and after the calibration. The calibrated .trf file replaces the

original file.
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E Calibration Tool
Tools

Visualization of Results

Calibration Tool

1. Selecta irfFile

-

Status

v

2. Parameters Selection 3. Actual Data

(1))

4. Run Calibration

4. Print Results

BAGEH Graph

GEH Statistics

GEH Graph

19 [=] 5 )|

275

25.0

225

200

17.5

GEH

150

125

2
5
75

10.0

N =} N N =1 n
o I = ol i [
o ol ol 551 m o T

Red: Before Calibration- Blue: After Calibration
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Volumes Before Calibration

1,700
1,600
1,500
1,400
1,300
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Volumes After Calibration

Model Counts
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2754
504l
2254

2001

,_.
~
wn

,_.
w
[=}

7.5

S04l

2541

0.0

Actual Speeds

Howarn R. HUGHES

College of

ENGINEERING

52




UNLV

REFERENCES

Anderson, R. E., & Hicks, C. (2011). Highlights of contemporary microsimulation.
Social Science Computer Review, 29(1), 3-8. d0i:10.1177/0894439310370084

Balakrishna, R., Antoniou, C., Ben-Akiva, M., Koutsopoulos, H. N., & Wen, Y. (2007).
Calibration of microscopic traffic simulation models: Methods and application.
Transportation Research Record, (1999), 198-207. doi:10.3141/1999-21

Breski, D., Cvitanic, D., & Lovric, I. (2006). Sensitivity analysis of the CORSIM
simulation model parameters; analiza osjetljivosti parametara simulacijskog
modela CORSIM. Gradevinar, 58(7), 539-548.

Brockfeld, E., Kuhne, R. D., & Wagner, P. (2005). Calibration and validation of
microscopic models of traffic flow. Transportation Research Record, (1934), 179-
187.

Chin, D. C. (1997). Comparative study of stochastic algorithms for system optimization
based on gradient approximations. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions On, 27(2), 244-249.

Cunha, A. L., Bessa Jr., J. E., & Setti, J. R. (2009). Genetic algorithm for the calibration
of vehicle performance models of microscopic traffic simulators. Paper presented
at the 14th Portuguese Conference on Atrtificial Intelligence, , 5816 LNAI 3-14.
doi:10.1007/978-3-642-04686-5_1

Holm, P., Tomich, D., Sloboden, J., & Lowrance, C. (2007). Traffic analysis toolbox
volume IV: Guidelines for applying CORSIM microsimulation modeling software.
( No. FHWA-HOP-07-079).ITT Industries, Inc.

Howaro R. HuGHES
College of 53

ENGINEERING



UNLV

Hourdakis, J., Michalopoulos, P., & Kottommannil, J. (2003). Practical procedure for
calibrating microscopic traffic simulation models. Transportation Research
Record, (1852), 130-139.

Jha, M., Gopalan, G., Garms, A., Mahanti, B. P., Toledo, T., & Ben-Akiva, M. (2004).
Development and calibration of a large-scale microscopic traffic simulation model.
Paper presented at the (1876) 121-131.

Kim, K., & Rilett, L. R. (2003). Simplex-based calibration of traffic microsimulation
models with intelligent transportation systems data. Paper presented at the (1855)
80-89.

Kondyli, A., Soria, I., Duret, A., & Elefteriadou, L. (2012). Sensitivity analysis of
CORSIM with respect to the process of freeway flow breakdown at bottleneck
locations. Simulation Modelling Practice and Theory, 22(0), 197-206.
doi:10.1016/j.simpat.2011.12.008

Lee, J. (2008). Calibration of traffic simulation models using simultaneous perturbation
stochastic approximation (SPSA) method extended through bayesian sampling
methodology. (Ph.D., Rutgers The State University of New Jersey - New
Brunswick).  ProQuest  Dissertations and  Theses, Retrieved from
http://search.proquest.com/docview/304453312?accountid=3611. (304453312).

Lee, J.,, & Ozbay, K. (2009). New calibration methodology for microscopic traffic
simulation using enhanced simultaneous perturbation stochastic approximation

approach. Transportation Research Record, (2124), 233-240. d0i:10.3141/2124-23

](.:()l‘lc;c‘ ‘z)f‘ ‘ 54
ENGINEERING



UNLV

Ma, J., Dong, H., & Zhang, H. M. (2007). Calibration of microsimulation with heuristic
optimization methods. Transportation Research Record, (1999), 208-217.
doi:10.3141/1999-22

Maryak, J. L., & Spall, J. C. (2005). Simultaneous perturbation optimization for efficient
image restoration. Aerospace and Electronic Systems, IEEE Transactions On,
41(1), 356-361.

McTrans. Traffic software integrated system - corridor simulation. Retrieved 03/01, 2011,
from http://mctrans.ce.ufl.edu/featured/TSIS/

Schultz, G. G., & Rilett, L. R. (2004). Analysis of distribution and calibration of car-
following sensitivity parameters in microscopic traffic simulation models. Paper
presented at the (1876) 41-51.

Schultz, G. G., & Rilett, L. R. (2005). Calibration of distributions of commercial motor
vehicles in CORSIM. Transportation Research Record, (1934), 246-255.

Spall, J. C. (1998a). An overview of the simultaneous perturbation method for efficient
optimization. Johns Hopkins APL Technical Digest, 19(4), 482 - 492.

Spall, J. C. (2003). Introduction to stochastic search and optimization : Estimation,
simulation, and control. New Jersey: John Wiley & Sons, Inc.

Spall, J. C. (1995). Stochastic version of second-order (newton-raphson) optimization
using only function measurements. Paper presented at the Simulation Conference
Proceedings, 1995. Winter, 347-352. doi:10.1109/WSC.1995.478756

Spall, J. C. (1998b). Implementation of the simultaneous perturbation algorithm for
stochastic optimization. Aerospace and Electronic Systems, IEEE Transactions

On, 34(3), 817-823. doi:10.1109/7.705889

Howaro R. HUGHES
College of 55

ENGINEERING



Toledo, T., Ben-Akiva, M., Darda, D., Jha, M., & Koutsopoulos, H. N. (2004).
Calibration of microscopic traffic simulation models with aggregate data.

Transportation Research Record, (1876), 10-19.

Kondyli, A., Soria, I., Duret, A., &Elefteriadou, L. (2012). Sensitivity analysis of
CORSIM with respect to the process of freeway flow breakdown at bottleneck
locations. Simulation Modelling Practice and Theory, 22(0), 197-206.

doi:http://dx.doi.org/10.1016/j.simpat.2011.12.008(Kondyli et al., 2012)

](.I()lic;cj ‘1)_‘/"‘ ‘ 56
ENGINEERING

UNLV



http://dx.doi.org/10.1016/j.simpat.2011.12.008

